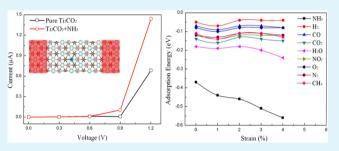
Monolayer Ti₂CO₂: A Promising Candidate for NH₃ Sensor or Capturer with High Sensitivity and Selectivity

Xue-fang Yu,[†] Yan-chun Li,[‡] Jian-bo Cheng,[†] Zhen-bo Liu,[†] Qing-zhong Li,[†] Wen-zuo Li,[†] Xin Yang,[†] and Bo Xiao^{*,†}

[†]The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China


[‡]Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China

Supporting Information

ACS APPLIED MATERIALS

XINTERFACES

ABSTRACT: Ti₂C is one of the thinnest layers in MXene family with high potential for applications. In the present study, the adsorption of NH₃, H₂, CH₄, CO, CO₂, N₂, NO₂, and O₂ on monolayer Ti₂CO₂ was investigated by using first-principles simulations to exploit its potential applications as gas sensor or capturer. Among all the gas molecules, only NH₃ could be chemisorbed on Ti₂CO₂ with apparent charge transfer of 0.174 e. We further calculated the current–voltage (*I–V*) relation using the nonequilibrium Green's function (NEGF) method. The transport feature exhibits distinct

Research Article

www.acsami.org

responses with a dramatic change of I-V relation before and after NH₃ adsorption on Ti₂CO₂. Thus, we predict that Ti₂CO₂ could be a promising candidate for the NH₃ sensor with high selectivity and sensitivity. On the other hand, the adsorption of NH₃ on Ti₂CO₂ could be further strengthened with the increase of applied strain on Ti₂CO₂, while the adsorption of other gases on Ti₂CO₂ is still weak under the same strain, indicating that the capture of NH₃ on Ti₂CO₂ under the strain is highly preferred over other gas molecules. Moreover, the adsorbed NH₃ on Ti₂CO₂ could be escapable by releasing the applied strain, which indicates the capture process is reversible. Our study widens the application of monolayer Ti₂CO₂ not only as the battery material, but also as the potential gas sensor or capturer of NH₃ with high sensitivity and selectivity.

KEYWORDS: MXene, monolayer Ti₂CO₂, NH₃ sensor, NH₃ capture, sensitivity, selectivity

1. INTRODUCTION

 $\rm NH_3$ is the most common substitute for chlorofluorocarbons (CFCs) in cooling systems, and it is a toxic compound and volatile, which is very harmful to the human body.¹ On the other hand, $\rm NH_3$ has been widely used to synthesize various materials in chemical industries and is a promising candidate as a future energy carrier in vehicles and as an $\rm NH_3$ reservoir for the selective catalytic reduction (SCR) of $\rm NO_x$ gases in diesel cars and trucks.^{2–6} Thus, it is highly desirable to find an effective method to sensor and capture the $\rm NH_3$ gases for atmospheric environmental controls and industry applications.

Semiconducting metal oxides and low-dimension materials have been considered to be the most promising candidate for gas sensors, which is due to its advantages such as low cost, small dimensions, and great compatibility with conventional microelectromechanical processing. So far, NH₃ sensors based on metal oxides (such as SnO_2 , TiO_2 , In_2O_3)^{7–9} and low-dimension materials (such as carbon nanocone;¹⁰ silicon carbide nanotube;¹¹ Al, B, Li, N-doped carbon nanotube;^{12–15} Ga, Al-doped boron nitride nanotube;¹⁶ and Au, B-doped

graphene^{17,18}) have been widely studied. However, the major drawback of these sensors is the lack of selectivity to only one particular gas (NH_3), and most of these sensors show long

recovery times at room temperature due to the tendency of NH₃ to strongly interact with many substrates. On the other hand, NH₃ storage has been widely studied, and it is found that the metal ammines $Mg(NH_3)_6Cl_2$,¹⁹ Sr(NH₃)₈Cl₂,²⁰ and mixed metal halide ammines²¹ could store NH₃ very effectively. However, the release of NH₃ from these materials needs either high temperature (>450 K) or multistep reactions, which are not suitable for automotive or fuel cell applications.

Very recently, MXene has attracted worldwide attention due to its structural similarity to graphene.^{22,23} MXene could be obtained from the removal of "A" group layer from the MAX phase, where "M" represents an early transition metal, "X" denotes C or N, and "A" is an A-group (mostly IIIA and IVA, or groups 13 and 14) element.^{22,23} Since Gogotsi et al. revealed the potential use of MXene layers as the electrochemical energy storage, such as electrode for batteries, supercapacitors, and hybrid devices,²⁴ several theoretical and experimental studies extensively reported the performance of MXene as anode

```
Received:April 29, 2015Accepted:June 4, 2015Published:June 4, 2015
```

material for metal ion batteries, the spintronic, and the optical devices. $^{25-28} \!\!$

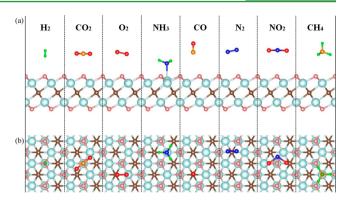
Among all the MXenes, Ti_2C is one of the thinnest phases, and it is found to be terminated with several kinds of functional group, such as F, OH, and/or O in the real etching process with HF acid.^{22,23} It has already been revealed that the electronic property of Ti_2C is strongly dependent on the functional group, with only Ti_2CO_2 exhibiting semiconductor character, Ti_2C , Ti_2CF_2 , and $Ti_2C(OH)_2$ exhibiting metallic character.^{29,30} Thus, Ti_2C with O termination may possess much more potential applications than other terminations in view of its semiconducting property.³¹

In this work, the potential of monolayer Ti_2CO_2 as the gas sensor and capture is explored by first-principle simulation. The preference adsorption of NH₃ against the other gas molecules (H₂, CH₄, CO, CO₂, N₂, NO₂ and O₂) on monolayer Ti_2CO_2 suggests the selectivity of monolayer Ti_2CO_2 toward NH₃. The distinct transport feature with a dramatic change of *I*–*V* relation before and after NH₃ adsorption indicates the strong sensitivity of monolayer Ti_2CO_2 toward NH₃. More importantly, the interaction of monolayer Ti_2CO_2 with NH₃ can be tuned easily by strains, indicating the facile way of NH₃ capture and releasing using monolayer Ti_2CO_2 .

2. COMPUTATIONAL METHOD

The density functional theory (DFT) calculation was performed using the Vienna Ab-Initio Simulation Package.^{32,33} The electron–ion interaction was described by projector augmented-wave (PAW)³⁴ pseudopotentials. For the exchange and correlation functionals, we use the Perdew–Burke–Ernzerhof (PBE) version of the generalized gradient approximation (GGA).³⁵ The energy cutoff of 520 eV was used for the wave functions expansion. The Brillouin zone integration was sampled by with $3 \times 3 \times 1$ *k*-grid mesh for geometry optimization, and $5 \times 5 \times 1$ *k*-grid mesh for electronic properties calculations to achieve high accuracy. The geometries were fully optimized until the forces on each atom is less than 0.01 eV/Å. The van der Waals interaction is introduced to treat the interaction between gas molecules and the monolayer Ti₂CO₂, and it is described by a semiempirical correction by the Grimme method.³⁶ The periodic structure of Ti₂CO₂ monolayer (3 × 3 supercell) has been decoupled by a vacuum thickness larger than 20 Å.

The adsorption energy (E_{ads}) is defined as


$$E_{ads} = E_{Ti2CO2+Gas} - E_{Gas} - E_{Ti2CO2}$$

where $E_{\text{Ti2CO2+Gas}}$ is the total energy of monolayer Ti₂CO₂ adsorbed with gas molecule, E_{Gas} is the total energy of gas molecule, and E_{Ti2CO2} is the total energy of monolayer Ti₂CO₂.

The electron transport calculations were performed using the Atomistix ToolKit (ATK) package³⁷ based on the density functional theory and nonequilibrium Green's function (NEGF) method. A numerical atomic basis set, a single- ζ basis with polarization, was used to solve the Kohn–Sham equation. GGA in the PBE form was adopted for the electron–electron interactions. The *K*-point sampling in the direction parallel to the interface (the *x* and *y* directions) is 2 × 2, and the number of real space mesh in the *z* direction is 50.

3. RESULTS AND DISCUSSION

The most stable structure of O functionalized monolayer Ti₂C, as mentioned in our previous study,²⁸ is shown in Figure 1. The lattice parameter of Ti₂CO₂ unit cell is 3.04 Å, which is consistent with other theoretical studies.^{28,29} We first consider several typical and possible adsorption sites for the gas molecules (NH₃, H₂, CH₄, CO, CO₂, N₂, NO₂, and O₂) adsorption on the monolayer Ti₂CO₂, including the top site over Ti, C, or O atom, bridge site between neighboring O and

Research Article

Figure 1. A schematic illustration of (a) side, and (b) top view of the adsorption of NH_{3} , H_2 , CH_4 , CO, CO_2 , N_2 , NO_2 , or O_2 molecule on monolayer Ti_2CO_2 .

O, or Ti and O atoms. Also, several typical orientation of gas molecules with respective to the monolayer $\rm Ti_2CO_2$ surface are considered. Taking NH₃ molecule's adsorption as an example, NH₃ molecule is initially placed vertically (including Ti₂CO₂ \leftrightarrow H–NH₂, and Ti₂CO₂ \leftrightarrow H₂–NH) or parallel (including Ti₂CO₂ \leftrightarrow N–H₃, and Ti₂CO₂ \leftrightarrow H₃–N) to the surface of monolayer Ti₂CO₂ for all the studied adsorption sites, and in each case, all the typical orientation of NH₃ molecules are considered.

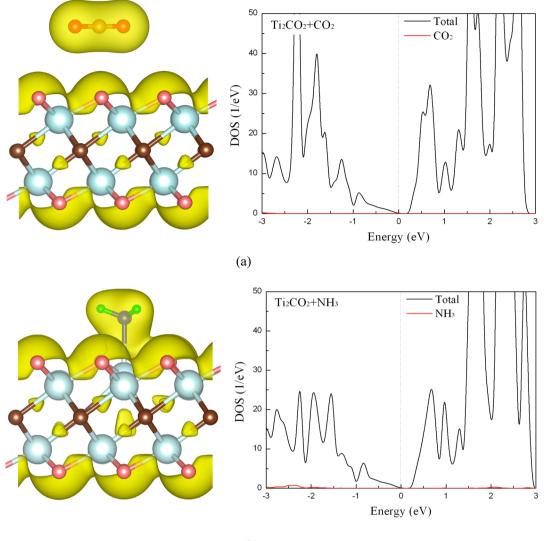

The most stable structures for the adsorption of gas molecules on monolayer Ti_2CO_2 are shown in Figure 1, and the corresponding adsorption energies, charge transfers, and the nearest distance between gas molecules and Ti_2CO_2 sheet (denote as $d_{Gas-T2CO_2}$) are listed in Table 1. In the case of NH₃

Table 1. Adsorption Energy (E_{ads}) , the Charge Transfer (C_T) from Gas Molecule to Ti₂CO₂, and the Nearest Distance $(d_{Gas-Ti2CO2})$ between Gas Molecule and Ti₂CO₂

	gas molecules	$E_{\rm ads}$ (eV)	$C_{\rm T}~({\rm e})^a$	$d_{\text{Gas-Ti2CO2}}$ (Å)
	NH ₃	-0.37	0.174	2.35
	H_2	-0.05	0.003	2.76
	CO	-0.07	0.004	3.19
	CO_2	-0.14	-0.007	3.08
	NO ₂	-0.12	-0.003	3.35
	O ₂	-0.08	-0.003	3.46
	N_2	-0.12	-0.002	3.71
	CH_4	-0.11	-0.001	3.06
a A	nositivo C	value indicator e	transfor of alact	rong from the go

 aA positive C_T value indicates a transfer of electrons from the gas molecule to ${\rm Ti}_2{\rm CO}_2.$

molecule, the strongest binding site is found to be the former with the N atom located directly above the Ti atom in Ti_2CO_2 , as shown in Figure 1. This structure has the adsorption energy of -0.37 eV and a charge transfer of 0.174 e from the NH₃ to the Ti_2CO_2 . The as-formed N-Ti bond length is 2.35 Å. Furthermore, the NH₃ adsorption induces a locally structural deformation to both NH₃ molecule and Ti_2CO_2 . The dihedral angle of H-H-H-N in NH₃ decreases from 39.50° in free NH₃ to 35.42° in the adsorbed form. The NH₃-adsorbed Ti atom is pulled outward from the layer with its neighboring Ti-C bond length increase from 2.08 to 2.35 Å. The three O atoms adjacent to N atom have slightly moved away from its original position due to the repulsion between O atoms and N atoms. The local structure deformation of NH₃ with monolayer

(b)

Figure 2. Total charge density and the density of states of (a) CO2 and (b) NH3 adsorption on monolayer Ti2CO2.

 Ti_2CO_2 , which is very consistent with the small adsorption energy.

In contrast, other gas molecules (H₂, CH₄, CO, CO₂, N₂, NO_2 , and O_2) exhibit quite different adsorption behavior compared with the case of NH₃. As shown in Table 1, the adsorption energies of these gas molecules on monolayer Ti_2CO_2 range from -0.05 to -0.14 eV, and the charge transfers between gas molecules and monolayer Ti₂CO₂ are from -0.007 to 0.004 e, which are obviously smaller than that in the case of NH_3 (adsorption energy -0.37 eV, and charge transfer 0.174 e). As shown in Figure 1, the adsorption of these gas molecules has a relatively large $d_{\text{Gas}-\text{T2CO2}}$ value and the change in the structures of gas molecules and Ti₂CO₂ is negligible, which implies the weak interaction between them. In detail, as shown in Figure 1, H_2 (or CO) molecule tends to be vertically adsorbed on the O (or C) site of Ti₂CO₂. The $d_{H2(or CO)-T2CO2}$ and the adsorption energy is 2.76 (or 3.19) Å and -0.05 (or -0.07) eV, respectively; CO₂ (or NO₂) molecule prefers to adsorb on the O site of Ti_2CO_2 and the O-C-O (or O-N-O) bond is parallel to the Ti_2CO_2 sheet, the $d_{CO2(or NO2)-T2CO2}$ and the adsorption energy are 3.08 (or 3.35) Å and -0.14 (or -0.12) eV, respectively; O₂ (or N₂) molecule prefers to adsorb

on the O site of Ti₂CO₂ sheet with a tilt structure, the $d_{O2(or N2)-T2CO2}$ and the adsorption energy are 3.46 (or 3.70) Å and -0.08 (or -0.12) eV, respectively. Lastly, CH₄ molecule tends to be adsorbed on the O-site with one C–H bond perpendicular to the surface of Ti₂CO₂ sheet while the other three C–H bonds point to the O atoms. The calculated $d_{CH4-T2CO2}$ and the adsorption energy are 3.06 Å and -0.11 eV, respectively.

To analyze the electronic interaction between the gas molecules and Ti_2CO_2 sheet, we calculate the density of state (DOS) and total charge density. Taking the adsorption of NH₃ and CO₂ on Ti_2CO_2 as examples, in the case of CO₂, the total charge density (Figure 2a) shows no overlap between CO₂ and Ti_2CO_2 , indicating the weak interaction between them, and correspondingly the change in the DOS of Ti_2CO_2 is negligible as shown in Figure 2a. Similar results also could be found in the case of the other gas molecules (including H₂, CH₄, CO, N₂, NO₂, and O₂). In view of the weak interaction and the few charge transfer between Ti_2CO_2 and these gas molecules (including H₂, CH₄, CO, CO₂, N₂, NO₂, and O₂), Ti_2CO_2 could not be the sensor to these gas molecules. In contrast, in the case of NH₃, the electronic charge are strongly overlapped,

ACS Applied Materials & Interfaces

as shown in Figure 2b, leading to orbital mixing and large charge transfer. The adsorption of NH₃ induces several distinct states at the lower-lying valence bands in the energy range around -2.5 eV; however, there is no noticeable modifications of the DOS near Fermi level ($E_{\rm F}$), as shown in Figure 2b. Thus, the adsorption of NH₃ does not have a substantial effect on the electronic structure of monolayer Ti₂CO₂. It should be noted that the adsorption-induced charge transfer is expected to affect the resistivity of the system, which can be measured experimentally and could be a marker for gas sensors. The evidence could be found in detecting NH₃ molecule by using MoS₂ and phosphorene,^{38,39} where the resistivity of the system increases obviously after the adsorption of NH₃ due to the relatively large charge transfer between them, although the change in the electronic properties of system is negligible.

To quantitatively evaluate the performance of monolayer Ti_2CO_2 as the NH₃ sensor, we simulated the current–voltage (I-V) relations before and after the NH₃ adsorption using the NEGF method, which allows the monitoring of the resistivity change in sensing materials upon the adsorption of chemicals. Ti_2CO_2 -based sensor is simulated using a model consisting of a Ti_2CO_2 sheet contacted by two Ti_2CO_2 electrodes, as shown in Figure 3a. The I-V curves for such Ti_2CO_2 junctions with and

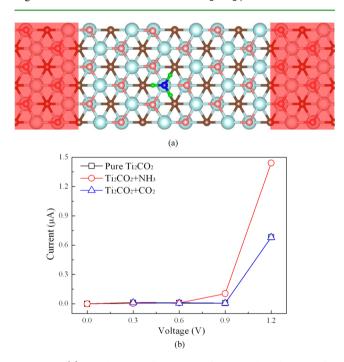


Figure 3. (a) A schematic illustration of Ti_2CO_2 -based sensor for detecting NH_3 molecule; (b) the current–voltage (*I–V*) relations before and after the adsorption of NH_3 or CO_2 molecule on monolayer Ti_2CO_2 .

without the adsorption of NH₃ molecule is shown in Figure 3b. The I-V curves of Ti₂CO₂ exhibits a clear nonlinear behavior. After the adsorption of NH₃ molecule, a dramatic increase of current is observed when the applied bias voltage larger than 0.9 V, indicating the high sensitivity of Ti₂CO₂ sensor to NH₃. In detail, the current passing through the monolayer Ti₂CO₂ is 0.68 μ A under the bias voltage of 1.2 V, but with the adsorption of NH₃ molecule, the current under the same bias is increased to 1.44 μ A, which is about the 111% increase. The increase in the current indicates the decrease of resistance after the NH₃ adsorption, which could be directly measured in experiment. As a comparison, the I-V curves before and after the adsorption of CO₂ molecule on Ti₂CO₂ have been calculated as shown in Figure 3b. In this case, the current change is negligible with the increase of applied bias voltage, and the main reason may result from the little charge transfer (-0.007 e) between them. Similar I-V character is also expected to occur when the other gas molecules (i.e., H₂, CH₄, CO, N₂, NO₂ and O₂) adsorb on Ti₂CO₂ due to the same reason. This result further confirms the high selectivity of Ti₂CO₂ as the NH₃ sensor. In view of the dramatically increased current value after the NH₃ adsorption on Ti₂CO₂, together with the relatively large charge transfer (0.174 e) between NH₃ and Ti₂CO₂ as compared with other gas molecules (from -0.007 to 0.004 e), we predict that monolayer Ti₂CO₂ is a promising candidate to sensor NH₃ molecule with high sensitivity and selectivity. It should be noted that the adsorption energy of NH₃ on Ti_2CO_2 is -0.37 eV, which is suitable for adsorption/desorption of gases on/from Ti₂CO₂ surface, and thus, the Ti₂CO₂ sensor could recover easily after detecting NH₃.

As mentioned above, MoS_2 and phosphorene have been proposed to be the NH₃ sensors.^{38,39} In this work, we also theoretically estimate the performance of MoS_2 and phosphorene as the NH₃ sensor in comparison with Ti₂CO₂. To do so, we have initially considered all the possible structures for the adsorption of NH₃ on MoS_2 and phosphorene, and the corresponding most stable structures are very similar to the previous studies.^{38,40} The calculated adsorption energies and the charge transfers between NH₃ and MoS_2 (and phosphorene) are listed in Table 2. These results are very consistent with

Table 2. Adsorption Energy (E_{ads}) and Charge Transfer (C_T) from NH₃ Molecule to Different 2D Materials

	gas molecules	$E_{\rm ads}$ (eV)	C_{T} (e) ^{<i>a</i>}
	Ti ₂ CO ₂	-0.37	0.174
	$Ti_2C(OH)_2$	-0.48	-0.117
	$Ti_3C_2O_2$	-0.34	0.166
	V_2CO_2	-0.81	0.265
	phosphorene	-0.21	0.028
	MoS ₂	-0.16	0.040
7.			

 ^{a}A positive $C_{\rm T}$ value indicates a transfer of electrons from the NH₃ molecule to 2D materials.

previous studies.^{38,40} Similar to the case of Ti₂CO₂, the electronic properties of MoS₂ and phosphorene after the adsorption of NH₃ are not substantially changed,^{38,40} and thus, the adsorption-induced charge transfer could act as a marker for gas sensors. It is found that the charge transfer from NH₃ to MoS_2 (0.040 e) or phosphorene (0.028 e) is obviously smaller than that in the case of Ti_2CO_2 (0.174 e). Correspondingly, the calculated I-V curve (Figure 4) before and after the adsorption of NH₃ on MoS₂ or phosphorene shows less current change as compared with the case in Ti_2CO_2 , which implies the superior sensitivity of Ti2CO2 as the NH3 sensor as compared with MoS_2 and phosphorene. It should be noted that the adsorption energy of NH₃ on MoS₂ or phosphorene is smaller than that of Ti₂CO₂, and thus, shorter recovery time is needed in MoS₂ or phosphorene compared with the one in Ti₂CO₂ after detecting NH₃.

As we know, Ti_2CO_2 is one of the members among MXene family.^{22,23} It would be very helpful to learn about the adsorption of NH₃ molecule on other kinds of MXenes with different surface terminations (i.e., $Ti_2C(OH)_2$), structures (i.e.,

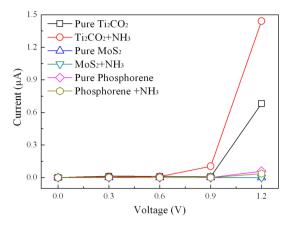
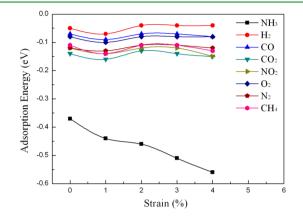



Figure 4. Calculated I-V curve before and after the adsorption of NH₃ on Ti₂CO₂, MoS₂, and phosphorene.

 $Ti_3C_2O_2$), and transition metals (i.e., V_2CO_2). To do so, we have considered all the possible structures for adsorption of NH₃ molecule on monolayer Ti₂C(OH)₂, Ti₃C₂O₂ and V₂CO₂, and the corresponding most stable structures are shown in Figure S1 in the Supporting Information. For the adsorption of NH_3 on $Ti_2C(OH)_2$, the N atom of NH_3 is located directly on the top of H atom in $Ti_2C(OH)_2$ in the most stable structure, while for the adsorption of NH₃ on Ti₃C₂O₂ or V₂CO₂, the most stable structure is similar to the case in Ti_2CO_2 , where the N atom of NH₃ adsorb on the top of transition metal (Ti or V). The corresponding adsorption energy and charge transfer values are listed in Table 2. It is found that the absolute values of charge transfer in all the above cases are larger than 0.117 e, which indicates the strong interaction of NH₃ with them. As mentioned above, the large charge transfer values could be measured experimentally and could be a marker for gas sensors. While the larger adsorption energy of NH₃ on $Ti_2C(OH)_2$ (-0.48 eV) or V₂CO₂ (-0.81 eV) implies the longer recover time after detecting NH₃, compared with NH₃ absorption on Ti_2CO_2 . In the case of NH₃ adsorption on $Ti_3C_2O_2$, due to the surface structural similarity between Ti₂CO₂ and Ti₃C₂O₂, both the adsorption energy and the charge transfer between NH₃ and $Ti_3C_2O_2$ are very close to the ones in NH₃ absorption on Ti_2CO_2 , and thus, it is expected that the $Ti_3C_2O_2$ could be another promising candidate for NH₃ sensor.

Next, we consider the possibility of Ti₂CO₂ as the capturer for NH₃ gas. As mentioned above, the adsorption energy of NH₃ on monolayer Ti₂CO₂ is -0.37 eV. According to Guo et al., the adsorption energy should be greater than -0.50 eV to effectively capture gas molecule on solid surface.⁴¹ Thus, the perfect monolayer Ti₂CO₂ is unsuitable for NH₃ gas capture due to its relatively small adsorption energy (-0.37 eV). As shown in Figure 2b, after the adsorption of NH₃ on Ti₂CO₂, the charge transfer mainly occurs between the N atom of NH₃ and Ti atom of Ti₂CO₂, and thus, the modification of charge state on N or Ti atom might result in the change of adsorption energy. On the other hand, our previous study showed that the charge state on Ti atom of Ti₂CO₂ decreases with the increase of the applied strains.²⁸ Thus, we assume that more electrons might transfer from the N of NH₃ to the Ti of Ti₂CO₂ after NH₃ adsorption to compensate the decreased electrons on the Ti atom of monolayer Ti_2CO_2 if strain is applied; consequently, the adsorption of NH₃ molecule on Ti₂CO₂ might be further strengthened after applying strains.

To verify this ideal, the adsorption of gas molecules on monolayer Ti_2CO_2 with biaxial strains (from 1 to 4%) have been studied, where the strain is defined as $\varepsilon = (a - a_0)/a_0$, where a_0 and a are the lattice parameter of the unit cell without strain and strain, respectively. As shown in Figure 5, the

Figure 5. Adsorption energies of gas molecules (including NH_3 , H_2 , CH_4 , CO, CO_2 , N_2 , NO_2 , or O_2) on monolayer Ti_2CO_2 as a function of applied biaxial strains (from 0 to 4%).

adsorption energy of NH₃ on Ti₂CO₂ dramatically decreases with the increase of applied biaxial strains on Ti₂CO₂. For example, the adsorption energy becomes -0.51 eV when 3% biaxial strain is applied. Taking the adsorption energy of -0.50eV as the reference⁴¹ for the gas capturer, our results reveal that the NH₃ gas could be effectively captured on monolayer Ti_2CO_2 with the biaxial strains larger than 3%. In contrast, the adsorption energies of other gas molecules on Ti₂CO₂ only change slightly after applying biaxial strains, and the interaction between them is still very weak, indicating that the capture of NH₃ on monolayer Ti₂CO₂ under the biaxial strain is highly preferred over other gas molecules. Moreover, the capture of NH₃ on monolayer Ti₂CO₂ is reversible, that is, the adsorbed NH₃ can be released by releasing the applied biaxial strains. Thus, we predict that the monolayer Ti₂CO₂ could be a promising material for efficient NH3 capture, separation, and storage. It should be noted that the sensitive strain dependence behavior also has been reported in the adsorption of NH₃ molecules on monolayer MoS₂.⁴²

Finally, we present the simulated X-ray diffraction (XRD) patterns and constant-current scanning tunneling microscopy (STM) for the Ti₂CO₂ structure before and after NH₃ adsorption, as shown in Figure S2 (Supporting Information). In XRD patterns (Figure S2a, Supporting Information), the first and second strong peaks are located between the diffraction angle 0 and 10°, and the intensity of the second peak decrease slightly after the NH₃ adsorption. In Figure S2b (Supporting Information), the STM images are simulated around the Fermi level $E_{\rm F}$ (ranging from $E_{\rm F}$ –0.5 eV to $E_{\rm F}$), employing the Tersoff–Hamann approach.⁴³ It is found that the bright protrusion appears after the adsorption of NH₃ on Ti₂CO₂, which is contributed from NH₃ molecule. All these results can provide useful information for future experimental studies for identifying the structure from the experimental samples.

4. CONCLUSION

By using first-principle simulation, we show that Ti_2CO_2 could be a promising candidate for the NH₃ sensor with high selectivity and sensitivity, which is deduced on the basis of the following evidence: (1) only NH_3 could be chemisorbed on the monolayer Ti_2CO_2 as compared with other gas molecules (H_2 , CH_4 , CO, CO₂, N₂, NO₂, and O₂); (2) the adsorption energy of NH₃ on Ti₂CO₂ is -0.37 eV, which is suitable for adsorption/desorption of gases on/from solid surface, and thus, the Ti₂CO₂ sensor could recover easily after detecting NH₃; (3) the electronic conductivity of Ti₂CO₂ has been significantly enhanced after the adsorption of NH₃, leading to the high sensitivity of the Ti₂CO₂ sensor to NH₃. In addition, the interaction between NH₃ and Ti₂CO₂ could be further enhanced by applying strains on Ti₂CO₂, that is, the adsorption energy becomes -0.51 eV when 3% strain is applied, while the adsorption of other gases on Ti₂CO₂ is much weaker than that of NH₃ under the same strain. Thus, our results show that Ti₂CO₂ could be used as the NH₃ capture, separation, and storage material by controlling strains.

ASSOCIATED CONTENT

S Supporting Information

Structure and total charge density for the adsorption of NH_3 on $Ti_2C(OH)_2$, $Ti_3C_2O_2$, and V_2CO_2 sheet; simulated XRD pattern and STM for the Ti_2CO_2 structure before and after NH_3 adsorption. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/ acsami.5b03737.

AUTHOR INFORMATION

Corresponding Author

*E-mail: xiaoboy8@gmail.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by the Natural Science Foundation of Shandong Province (no. ZR2013BM016). A part of the computation in this work has been done using the Supercomputing Environment of Chinese Academy of Sciences.

REFERENCES

(1) Licyayo, D. C. M.; Suzuki, A.; Matsumoto, M. Interactions Among Ammonia Fungi on MY Agar Medium with Varying pH. *Mycoscience* **2007**, *48*, 20–28.

(2) Christensen, C. H.; Johannessen, T.; Sorensen, R. Z.; Norskov, J. K. Towards An Ammonia-Mediated Hydrogen Economy? *Catal. Today* **2006**, *111*, 140–144.

(3) Chakraborty, D.; Petersen, H. N.; Elkjaer, C.; Cagulada, A.; Johannessen, T. Solid Ammonia As Energy Carrier: Current Status and Future Prospects. *Fuel Cells Bull.* **2009**, 2009, 12–15.

(4) Lan, R.; Irvine, J. T. S.; Tao, S. Ammonia and Related Chemicals As Potential Indirect Hydrogen Storage Materials. *Int. J. Hydrogen Energy* **2012**, *37*, 1482–1494.

(5) Schuth, F.; Palkovits, R.; Schlogl, R.; Su, D. S. Ammonia as a Possible Element in an Energy Infrastructure: Catalysts for Ammonia Decomposition. *Energy Environ. Sci.* **2012**, *5*, 6278–6289.

(6) Elmoe, T. D.; Sorensen, R. Z.; Quaade, U.; Christensen, C. H.; Norskov, J. K.; Johannessen, T. A High-Density Ammonia Storage/ Delivery System Based on $Mg(NH_3)_6Cl_2$ for SCR-DeNO_x in Vehicles. *Chem. Eng. Sci.* **2006**, *61*, 2618–2625.

(7) Wang, Y. D.; Wu, X. H.; Su, Q.; Li, Y. F.; Zhou, Z. L. Ammonia-Sensing Characteristics of Pt and SiO₂ Doped SnO₂ Materials. *Solid-State Electron.* **2011**, *45*, 347–350. (8) Shimizu, Y.; Okamato, T.; Takao, Y.; Egashira, M. Desorption Behavior of Ammonia from TiO₂ Based Specimens-Ammonia Sensing Mechanism of Double Layer Sensors with TiO₂ Based Catalyst Layers. *J. Mol. Catal.* **2000**, *155*, 183–191.

(9) Guo, P.; Pan, H. Selectivity of Ti-Doped In_2O_3 Ceramics as An Ammonia Sensor. Sens. Actuators, B **2006**, 114, 762–767.

(10) Baei, M. T.; Peyghan, A. A.; Bagheri, Z. Carbon Nanocone as an Ammonia Sensor: DFT Studies. *Struct Chem.* **2013**, *24*, 1099–1103.

(11) Ganji, M. D.; Seyed-Aghaei, N.; Taghavi, M. M.; Rezvani, M.; Kazempour, F. Ammonia Adsorption on SiC Nanotubes: A Density Functional Theory Investigation. *Fullerenes, Nanotubes, Carbon Nanostruct.* **2011**, *19*, 289–299.

(12) Azizi, K.; Karimpanah, M. Computational Study of Al- or P-doped Single-Walled Carbon Nanotubes as NH_3 and NO_2 Sensors. *Appl. Surf. Sci.* **2013**, 285P, 102–109.

(13) Bai, L.; Zhou, Z. Computational Study of B- or N-Doped Single-Walled Carbon Nanotubes as NH_3 and NO_2 Sensors. *Carbon.* 2007, 45, 2105–2110.

(14) Goudarzi, F.; Vaezi, M. R.; Kazemzadeh, A. A Novel Single Wall Carbon Nanotubes-Based Sensor Doped with Lithium for Ammonia Gas Detection. J. Ceram. Process. Res. **2012**, 13, 612–616.

(15) Battie, Y.; Ducloux, O.; Thobois, P.; Susi, T.; Kauppinen, E. I.; Loiseau, A. Selective Differential Ammonia Gas Sensor Based On N-Doped SWCNT Films. *Phys. Status Solidi B* **2011**, *248*, 2462–2466.

(16) Soltani, A.; Raz, S. G.; Rezaei, V. J.; Khalaji, A. D.; Savar, M. Ab Initio Investigation of Al- and Ga-Doped Single-Walled Boron Nitride Nanotubes as Ammonis Sensor. *Appl. Surf. Sci.* **2012**, *263*, 619–625.

(17) Gautam, M.; Jayatissa, A. H. Ammonia Gas Sensing Behavior of Graphene Surface Decorated with Gold Nanoparticles. *Solid-State Electron.* **2012**, *78*, 159–165.

(18) Zhang, Y. H.; Chen, Y. B.; Zhou, K. G.; Liu, C. H.; Zeng, J.; Zhang, H. L.; Peng, Y. Improving Gas Sensing Properties of Graphene by Introducing Dopants and Defects: A First-Principles Study. *Nanotechnology*. **2009**, *20*, 185504–185511.

(19) Sorensen, R. Z.; Hummelshoj, J. S.; Klerke, A.; Reves, J. B.; Vegge, T.; Norskov, J. K.; Christensen, C. H.; Sorensen, R. Z.; Hummelshoj, J. S.; Norskov, J. K. Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts. *J. Am. Chem. Soc.* **2008**, *130*, 8660–8668.

(20) Lysgaard, S.; Ammitzboll, A. L.; Johnsen, R. E.; Norby, P.; Quaade, U. J.; Vegge, T. Resolving the Stability and Structure of Strontium Chloride Amines from Equilibrium Pressures, XRD and DFT. *Int. J. Hydrogen Energy.* **2012**, *37*, 18927–18936.

(21) Jensen, P. B.; Lysgaard, S.; Quaade, U. J.; Vegge, T. Designing Mixed Metal Halide Ammines for Ammonia Storage Using Density Functional Theory And Genetic Algorithms. *Phys. Chem. Chem. Phys.* **2014**, *16*, 19762–19740.

(22) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. *Adv. Mater.* **2014**, *26*, 992–1005.

(23) Naguib, M.; Gogotsi, Y. Synthesis of Two-Dimensional Materials by Selective Extraction. *Acc. Chem. Res.* **2015**, *48*, 128–135. (24) Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. *Science* **2013**, *341*, 1502–1505.

(25) Yu, X. F.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. Mg Intercalation into Ti_2C Building Block. *Chem. Phys. Lett.* **2015**, 629, 36–39.

(26) Xie, Y.; Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y.; Yu, X.; Nam, K.-W.; Yang, X.-Q.; Kolesnikov, A. I.; Kent, P. R. Role of Surface Structure on Li-Ion Energy Storage Capacity of Two Dimensional Transition Metal Carbides. J. Am. Chem. Soc. 2014, 136, 6385–6394.

(27) Peng, X.; Peng, L.; Wu, C.; Xie, Y. Two Dimensional Nanomaterials for Flexible Supercapacitors. *Chem. Soc. Rev.* 2014, 43, 3303–3323.

ACS Applied Materials & Interfaces

(28) Yu, X. F.; Cheng, J. B.; Liu, Z. B.; Li, Q. Z.; Li, W. Z.; Yang, X.; Xiao, B. The Band Gap Modulation of Monolayer Ti_2CO_2 by Strain. *RSC Adv.* **2015**, *5*, 30438–30444.

(29) Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C.-Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. *Adv. Funct. Mater.* **2013**, *23*, 2185–2192.

(30) Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; W.Barsoum, M. First Principles Study of Two-Dimensional Early Transition Metal Carbides. *MRS Commun.* **2012**, *2*, 133–137.

(31) Come, J.; Naguib, M.; Rozier, P.; Barsoum, M. W.; Gogotsi, Y.; Taberna, P. L.; Morcrette, M.; Simon, P. A Non-Aqueous Asymmetric Cell with a Ti₂C-Based Two-Dimensional Negative Electrode. *J. Electrochem. Soc.* **2012**, *159*, A1368–A1373.

(32) Kresse, G.; Furthmüller, J. Efficiency of ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. *Comput. Mater. Sci.* **1996**, *6*, 15–50.

(33) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab-Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169–11186.

(34) Kresse, G.; Joubert, J. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*, 1758–1775.

(35) Wang, Y.; Perdew, J. P. Correlation Hole of the Spin-Polarized Electron Gas, with Exact Small-Wave-Vector and High-Density Scaling. *Phys. Rev. B* **1991**, *44*, 13298–13307.

(36) Grimme, S. Semiempirical GGA-type Density Functional Constructed with A Long-Range Dispersion Correction. *J. Comput. Chem.* **2006**, *30*, 1787–1799.

(37) Brandbyge, M.; Mozos, J. L.; Ordejon, P.; Taylor, J.; Stokbro, K. Density-Functional Method for Nonequilibrium Electron Transport. *Phys. Rev. B* **2002**, *65*, 165401.

(38) Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y. J.; Park, S. G.; Kwon, J. D.; Kim, C. S.; Song, M. K.; J, Y.; Nam, K. S.; Lee, S.; Yoo, T. J.; Kang, C. C.; Lee, B. H.; Ko, H. C.; Ajayan, P. M.; Kim, D. H. Charge-Transfer-Based Gas Sensing Using Atomic-Layer MOS_2 . *Sci. Rep.* **2015**, *5*, 8052.

(39) Kou, L. Z.; Frauenheim, T.; Chen, C. F. Phosphorene as A Superior Gas Sensor: Selective Adsorption and Distince I-V Response. J. Phys. Chem. Lett. **2014**, 5, 2675–2681.

(40) Cai, Y. Q.; Ke, Q. Q.; Zhang, G.; Zhang, Y. W. Energetics, Charge Transfer and Magnetism of Small Molecules Physisorbed on Phosphorene. J. Phys. Chem. C 2015, 119, 3102–3110.

(41) Guo, H. Y.; Zhang, W. H.; Lu, N.; Zhuo, Z. W.; Zeng, X. C.; Wu, X. J.; Yang, J. L. CO_2 Capture on h-BN Sheet with High Selectivity Controlled by External Electric Field. *J. Phys. Chem. C* **2015**, 119, 6912–6917.

(42) Kou, L. Z.; Du, A. J.; Cheng, C. F.; Frauenheim, T. Strain Engineering of Selective Chemical Adsorption on Monolayer MoS₂. *Nanoscale* **2014**, *6*, 5156–5161.

(43) Tersoff, J.; Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. *Phys. Rev. Lett.* **1983**, *50*, 1998.